Inorg. Chem. 2003, 42, 932–934

Inorganic Chemistry

Perfluoroalkyl-Substituted Triazapentadienes and Their Metal Complexes

A. R. Siedle,^{*,†} Robert J. Webb,[†] Fred E. Behr,[‡] Richard A. Newmark,[†] David A. Weil,[†] Kristin Erickson,[†] Roberta Naujok,[†] Myles Brostrom,[†] Mark Mueller,[†] Shih-Hung Chou,[†] and Victor G. Young, Jr.[§]

3M Corporate Research Laboratories, St. Paul, Minnesota 55144, 3M Specialty Materials Division, St. Paul, Minnesota 55144, and Chemistry Department, University of Minnesota, Minneapolis, Minnesota 55455

Received September 11, 2002

Triazapentadienides, $C_3F_7-C(=NR)-N=C(NHR)-C_3F_7$, result from the reaction of primary amines RNH₂ with the fluorinated imine $C_3F_7-CF=N-C_4F_9$. The aniline derivative (R = Ph) is a weak monoprotic acid in dmso. Its conjugate base exhibits an extensive coordination chemistry. It acts as a bidentate ligand toward the molecular fragments Pd(C₃H₅), Rh(c-C₈H₁₂), Ir(c-C₈H₁₂), and Rh-(CO)₂. The chelates [C₃F₇-C(NPh)-N-C(NPh)-C₃F₇]₂M, M = Mg, Mn, Fe, Co, Ni, Cu, Zn, and Pd, were prepared. In the crystallographically characterized Co complex, the metal is 3d⁷, S = ${}^{3}/_{2}$ and tetrahedrally coordinated. Spin densities at carbon in the C₆H₅ and C₃F₇ groups were estimated from the ¹H and ¹⁹F contact shifts. Spin delocalization onto phenyl sp² carbons is ~10 times greater than onto the fluorinated sp³ carbons.

Organic ligands form the cornerstone of a broad field of inorganic chemistry, that of coordination compounds. For example, $O, O-\beta$ -diketone complexes, [R-C(O)-CH-C(OR]M, are one of the largest classes of transition metal and main group chelates; examples containing a substantial fraction of the elements in the periodic table are known.¹ Diaza analogues, in which the ligating oxygen atoms are replaced by isoelectronic NR groups, β -ketimine complexes, [R-C(NR)-CH-C(NR)-R]M, show chemical similarities and have recently been investigated as polymerization catalysts as well as models for copper metalloproteins^{2,3} We present a survey of a broad, new class of ligands, perfluoroalkyl-substituted triazapentadienes of the type R_fC(=NR)- $N=C(HNR)R_f$ (R_f = perfluoroalkyl). They exhibit substantial scope and diversity in their chemistry that we believe may rival that of diketones and diketimines.⁴

When $(C_4F_9)_3N$ and SbF₅ are heated to ~140 °C, loss of C_4F_{10} occurs and the imine C_3F_7 -CF=NC₄F₉, **1**, distills from

the reaction mixture.⁵ This acid-catalyzed α -elimination reaction is generally applicable to linear, cyclic, and heteroatom-substituted⁶ perfluoroalkylamines. Addition of **1** to

- (2) (a) Kim, J.; Hwang, J. W.; Kim, Y.; Lee, M. H.; Han, Y.; Do, Y. J. Organomet. Chem. 2001, 620, 1. (b) Qian, B.; Ward, D. L.; Smith, M. R., III. Organometallics 1998, 17, 3070. (c) Rahim, M.; Taylor, N. J.; Xin, S.; Collins, S. Organometallics 1998, 17, 1315. (d) Cheng, M.; Lobkovsky, E. B.; Coates, J. J. Am. Chem. Soc. 1998, 120, 11018. (e) Radzewich, C. E.; Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 1998, 120, 9384. (f) Ihara, E.; Young, V. G., Jr.; Jordan, R. F. J. Am. Chem. Soc. 1998, 120, 9384. (g) O'Keefe, B. J.; Hillmyer, M.; Tolman, W. B. J. Chem. Soc., Dalton Trans. 2001, 2215. (h) Jazdzewski, B. A.; Holland, P. L.; Pink, M.; Young, V. G., Jr.; Spencer, D. J. E.; Tolman, W. B. Inorg. Chem. 2001, 40, 6097. (i) Panda, A.; Stender, M.; Wright, R. J.; Olmstead, M.; Klavins, P.; Power, P. P. Inorg. Chem. 2002, 41, 3909.
- (3) Other exemplary uninegative diaza ligands include phosphorinamines: (a) Cavell, R. G.; Babu, R. P. K.; Kasani, A.; McDonald, A. J. Am. Chem. Soc. **1999**, 121, 5805. (b) Kasani, A.; McDonald, R.; Cavell, R. G. Organometallics **1999**, 18, 3775. Arylguanidates: (c) Holman, K. T.; Robinson, S. D. Sahajpal, A.; Stead, J. W. J. Chem. Soc., Dalton Trans. 1999, 15. (d) Maia, J. R.; Gazard, P. A.; Kilner, M.; Batsamov, A. S.; Howard, J. A. K. J. Chem. Soc., Dalton Trans. 1997, 4625. Aminidates (e) Barker, J.; Kilner, M., Coord. Chem. Rev. 1994, 133, 219. (f) Edelman, F. T. Top. Curr. Chem. 1996, 179, 113. (g) Jayaratne, K. C.; Keaton, R. J.; Henningsen, D. A.; Sita, L. R. J. Am. Chem. Soc. 2000, 122, 10490. (h) Chen, C.-T.; Rees, L. H.; Cowley, A. R.; Green, M. L. H. J. Chem. Soc., Dalton Trans. 2001, 1761. (i) Gomez, R.; Green, M. L. H. J. Chem. Soc., Dalton Trans. 1996, 939. (j) Barbier-Baudry, D.; Bouazza, A.; Brachais, C. H.; Dormond, A.; Visseaux, M. Macromol. Rapid Commun. 2000, 21, 213. (k) Keaton, R. J.; Jayaratne, K. C.; Henningsen; Koterwas, L. A.; Sita, L. R. J. Am. Chem. Soc. 2001, 123, 6197. Aminotroponimines: (1) Brasen, W. R.; Holmquist, H. E.; Benson, R. E. J. Am. Chem. Soc. 1961, 83, 3125. (m) Roesky, P. W. Chem. Soc. Rev. 2000, 29, 335. 5-Aza-semicorrins: (n) Leutenegger, U.; Umbricht, G.; Fahrni, C.; von Matt, P.; Pfaltz, A. Tetrahedron 1992, 48, 2143. Two excellent comprehensive reviews have recently appeared. One (Bourget-Merle, L.; Lappert, M. F.; Severn, J. R. Chem. Rev. 2002, 102, 3031) discusses β -diketoiminato metal complexes. The other (Piers, W.; Emslie, D. J. H. Coord. Chem. Rev. 2002, 233-234, 131) treats, inter alia, NN, NNN, NO, NCN, and NON donor ligands.
- (4) Trifluoroacetamidine, HN=C(CF₃)-NH₂, undergoes a condensation reaction in the presence of platinum hydrides to liberate NH₃ and form compounds containing the HN-C(CF₃)-N-C(CF₃)-NH ligand among which the RuH(CO)(PPh₃)₂ complex was characterized crystallographically. Hursthouse, M. B.; Mazid, M. A.; Robinson, S. D.; Sahajpal, A. J. Chem. Soc., Dalton Trans. **1994**, 3615. We thank a reviewer for drawing notice to these ingenious syntheses.
- (5) Petrov, V. A.; Belen'lii, G. G.; German, L. S. *Izv. Akad. Nauk SSSR*, *Ser. Khim.* **1985**, 1934. Aluminum chlorofluoride has also been used as a catalyst: Petrov, V. A.; Krespan, C. G.; Smart, B. E. *J. Fluorine Chem.* **1996**, 77, 139.
- (6) Banks, R. E.; Burling, E. D. J. Chem. Soc. 1965, 6077.

10.1021/ic020550t CCC: \$25.00 © 2003 American Chemical Society Published on Web 01/21/2003

^{*} Author to whom correspondence should be addressed. E-mail: arsiedle@mmm.com.

[†] 3M Corporate Research Laboratories.

[‡] 3M Specialty Materials Division.

[§] University of Minnesota.

Siedle, A. R. In *Comprehensive Coordination Chemistry*; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon: New York, 1987; Vol. 2, p 365.

aniline in diethyl ether at 25 °C results in a series of addition–HF elimination steps, and $C_3F_7-C(=NPh)-N=C(PhNH)-C_3F_7$, **2** (65% yield), and insoluble PhNH₂• 3HF are produced. Pale yellow **2** may be readily purified by evaporation of the solvent and recrystallization from heptane or vacuum sublimation.^{7,8} This quite general synthesis of triazapentadienes succeeds with a wide variety of primary amines of diverse functionality so long as they do not contain other acidic groups (NH₂, CO₂H, OH, SH).⁹ Chiral amines can be employed as well. Anilines containing electron-releasing groups such as *p*-OMe undergo instead intramolecular cyclization to give benzopyrimidines. Monosubstituted hydrazines, RN₂H₃, yield the corresponding 1-R-3,5-(C₃F₇)₂-1,2,4-triazoles.

Perfluoroalkyltriazapentadienes are weak monoprotic acids: 2 and $C_3F_7-C(=NR)-N=C(NRH)-C_3F_7$ (R = C_6H_4- N=N-C₆H₅), **3**, have pK_a 's of 14.3 and 13.8, respectively, in dimethyl sulfoxide, cf. 13.3 for (MeCO)₂CH₂.¹⁰ Salts of $[C_3F_7-C(NPh)-N-C(NPh)-C_3F_7]^-$ may be obtained using a wide variety of onium hydroxides in methanol. Treatment of 2 with *n*-BuLi in ether or THF affords $Li[C_3F_7-C(NPh)-$ N-C(NPh)-C₃F₇], 4. This reacts with MeI, Me₃SiCl, Ph₃-PAuCl, and MeHgCl and to give $C_3F_7-C(=NPh) N=C(NPhR)-C_{3}F_{7}, R = CH_{3}$ (5), SiMe₃ (6), AuPPh₃ (7), and HgMe (8), respectively. 5-7 contain C_3F_7 groups that are inequivalent by ¹⁹F NMR, which indicates that the conjugate base of 2 acts as a monodentate ligand in these compounds. In solution, 8 comprises a mixture of two isomeric η^1 compounds in which the MeHg moiety is attached to either the central or terminal nitrogen positions.

- (7) A closely related compound, the C₇F₁₅ analogue of 2, was observed by GC/MS (but not isolated) among the five products of the reaction of C₇F₁₅CN with aniline: Paciorek, K. J. L.; Nakahara, J. H.; Kratzer, R. H. J. Fluorine Chem. **1985**, 30, 241.
- (8) **2**: Mp 87.8 °C, ΔH_{fus} 31.3 kJ mol⁻¹. Molar conductance: 15.8 ohm⁻¹ $\text{cm}^2 \text{ mol}^{-1}$ (2.2 × 10⁻³ M in MeNO₂). HRMS: *m*/*z* 559.0728 (M⁺, calcd 559.0724), 390.0834 (M⁺ - C₃F₇). IR (Nujol) (Raman, neat): 3200, 1682 (1691) 1633 (1625), 1593 (1590) cm⁻¹. UV (isooctane): λ_{max} 207 (log ϵ 4.34), 266 (3.87) nm. ¹⁵N NMR (60.8 MHz, 1,2-C₂D₂-Cl₄, 300 K, with respect to external NH₃, indirectly observed via a ¹H GHMBC pulse sequence): δ 288.4 (s, N₁), 226.3 (s, N₃), 113.7 (d, $J_{\rm NH}$ 93 Hz, N₅). Assignments were confirmed by ¹⁵N labeling at terminal N_{1.5} through synthesis of **2** from Ph¹⁵NH₂. ¹⁹F NMR (376.2 MHz, dmso, 300 K): the spectra disclose two inequivalent C₃F₇ groups in which the two different $\alpha\text{-}CF_2$ groups show geminal inequivalence; but only one of the two inequivalent β -CF₂ groups shows geminal inequivalence [δ -126.39 (2F, β -CF₂), -125.69 and -125.28 (2F, β -CF₂, AB multiplet, J_{AB} 291 Hz), -118.76 and -114.46 (2F, α -CF₂, AB multiplet, J_{AB} 268 Hz), -116.13 and -114.50 (2F, α-CF₂, AB multiplet, J_{AB} 270 Hz), -80.14 and -79.90 (6F, CF₃)]. The ¹⁹F resonances are broad ($w/2 \sim 10-20$ Hz). NMR spectra are field, temperature, and solvent dependent on account of both a 1-5prototropic shift and at least one additional, low-temperature process. Dynamics in 2 have been explored by crystallographic, DNMR, and computational methods. The results will be reported elsewhere.
- (9) This is not a severe limitation because such groups can often be masked or protected. For example, (*p*-NO₂Ph)₂N₃C₂(C₃F₇)₂H, prepared from 1 and *p*-nitroaniline, can be reduced (H₂, Pd/C) to (*p*-NH₂Ph)₂N₃C₂-(C₃F₇)₂H, which is unobtainable directly from *p*-phenylenediamine. Subsequent diazotization with [NO][BF4] in CH₃CN yields [(*p*-N₂-Ph)₂N₃C₂(C₃F₇)₂H](BF4)₂, coupling of which with 2-naphthol (Py, CH₃CN) affords [4-(2-HO-C₁₀H₈N=N)Ph]₂N₃C₂(C₃F₇)₂H. Coupling with *p*-Me₂NC₆H₄CH=CH-CHO and elimination of water yields the Schiff base (*p*-Me₂NC₆H₄CH=CH-CH=N-C₆H₄)₂N₃C₂(C₃F₇)₂H.
- (10) By potentiometric titration with methanolic [Bu₄N]OH; cf.: Bordwell, F. G. Acc. Chem. Res. **1988**, 21, 456.

Figure 1. ORTEP drawing of $[C_3F_7-C(NPh)-N-C(NPh)-C_3F_7]_2C_0$, 17.

These interconvert slowly on the NMR time scale, but only the former isomer is observed in crystals.

Most useful for the synthesis of transition metal derivatives are Ag[C₃F₇-C(NPh)-N-C(NPh)-C₃F₇], **9**, K[C₃F₇-C(NPh)-N-C(NPh)-C₃F₇)], **10**, and Mg[C₃F₇-C(NPh)-N-C(NPh)-C₃F₇]₂, **11**, prepared from **2** and Ag₂O in refluxing CH₃CN, KH in THF, and (C₅H₅)₂Mg in toluene at 25 °C, respectively.

Reaction of **9** with $[(C_3H_5)PdCl]_2$, $[Rh(CO)_2Cl]_2$, and $(COD)MCl_2$ (M = Rh, Ir) in CH₃CN at room temperature affords $[C_3F_7-C(NPh)-N-C(NPh)-C_3F_7]E$, $E = Pd(C_3H_5)$, **12**, Rh(CO)₂, **13**, Rh(COD), **14**, and Ir(COD), **15**, respectively (COD = c-C_8H_{12}). Treatment of **10** with FeI₂, CoI₂, CuCl₂, and Pd(CF₃CO-CH-COCF₃)₂ in THF produces the symmetrical bis(chelates) $[C_3F_7-C(NPh)-N-C(NPh)-C_3F_7]_2M$ where M = Fe (**16**), Co (**17**), Cu (**18**), and Pd (**19**). The nickel complex, M= Ni (**20**), was obtained from **11** and NiBr₂(dimethoxyethane) in toluene at 70 °C.

Advantage can be taken of the acidic proton in **2** to prepare additional members of the symmetrical chelate set through reactions with compounds having polar metal—carbon bonds. The compounds $[C_3F_7-C(NPh)-N-C(NPh)-C_3F_7]_2M$, M = Mn (**21**) and Zn (**22**), were obtained upon treatment with $(C_5H_5)_2Mn$ and Me₂Zn, respectively. With the exception of **6**, **7**, and **11** (water reactive) and **21** (O₂ reactive), the new compounds reported here are air-stable. They have the useful property of being soluble in *both* hydrocarbon (C₆H₁₄) and fluorous (C₆F₁₄) solvents.

An ORTEP view of $[C_3F_7-C(NPh)-N-C(NPh)-C_3F_7]_2$ -Co (17) is shown in Figure 1.¹¹ In it, cobalt is tetrahedrally coordinated, with the angle between the two CoN₂ planes being 92°; $d(Co-N)_{av}$ is 1.968(2) Å. This geometry helps to minimize nonbonded repulsion among the C₆H₅ rings. The CoN₃C₂ ring is asymmetric: $d(C-N)_{av}$ to N(1,3,4,6) is 1.307(4) Å but $d(C-N)_{av}$ to N(2,5) is much longer, 1.338(4) Å. The bite distance of the ligand is 2.870 Å.

⁽¹¹⁾ Crystal data: red-orange plates from C₆H₁₄. $P\bar{1}$ (triclinic), a = 11.706(2) Å, b = 12.112(2) Å, c = 17.756(4) Å, $\alpha = 102.939(3)^{\circ}$, $\beta = 102.498(4)^{\circ}$, $\gamma = 106.230(3)^{\circ}$ at 173 K with Mo Ka radiation, V = 2248.7(3) Å³, Z = 2, FW = 1175.55, d(calcd) = 1.736 g cm⁻³, abs coeff = 0.537 mm⁻¹, max/min transmission = 1.000/0.908. Final $R [I > 2\sigma(I)]$: R1 = 0.04399, wR2 = 0.1083. R indices (all data): R1 = 0.0657, wR2 = 0.1233. X-ray crystallographic files (CIF) are available as Supporting Information.

COMMUNICATION

Cobalt in **17** is high spin $3d^7$, $S = {}^{3}/{}_{2}$ ($\mu_{eff} = 4.05 \ \mu_{B}$ in CD₂Cl₂ at 300 K by NMR methods). Even so, well-resolved ¹H, ¹³C, and ¹⁹F NMR spectra were obtained and assigned with the aid of ¹H-¹³C 2D HMQC spectroscopy.¹² Chemical shifts in **17** relative to the diamagnetic Zn complex **22**¹³ comprise contact shifts,¹⁴ and, following Eaton et al.,¹⁵ they were used to calculate spin densities at the *o*-, *m*-, and *p*-carbon positions in the ligand phenyl rings: 13.3, -2.0, and 9.6 e × 10⁻³ respectively. Spin densities in the C₃F₇ moieties are much lower: -17, -6, and 8 e × 10⁻⁴ for the α - and β -CF₂ and CF₃ carbon nuclei, respectively. Spin delocalization through π bonds in the C₆H₅ rings is thus much

more effective than through σ bonds in the C₃F₇ groups despite the strong electron-withdrawing effect of fluorine.

Supporting Information Available: Crystallographic data in CIF format and experimental details for the collection of crystallographic data. Experimental details for the synthesis of **1**, **2**, and **17**. This information is available free of charge via the Internet at http://pubs.acs.org.

IC020550T

- (13) **22**: ¹H NMR (599.7 MHz, CD₂Cl₂, 300 K) δ 7.29 (m, 8H, H_{meta}), 7.25 (m, 4H, H_{para}), 6.64 (m, 8H, H_{ortho}); ¹³C (150.8 MHz) δ 158.9 (t, ²J_{CF} 23 Hz, NCN), 142.9 (4C, C_{ipso}), 129.7 (8C, C_{meta}), 126.9 (4C, J_{CF} 272 Hz, CF₃CF₂); ¹⁹F (564.2 MHz) δ -80.5 (CF₃), -104.5 (CF₂N), -123.4 (CF₃CF₂). The ¹H spectrum shows more than the expected number of lines. We believe that the pairwise degeneracy of H_o and H_m is lifted due to restricted rotation of the phenyl rings. Assignments were confirmed by a 2D ¹H⁻¹³C experiment. Mp: 130–131 °C. HRMS: *m*/z 1180.0749 (M⁺). IR: 1558 cm⁻¹. UV (isootane) λ_{max} (log ϵ): 253 (3.74), 337 (4.32). IR: 1580, 1507, 1489 cm⁻¹. Raman: 1647, 1581, 1560 cm⁻¹. Anal.: Calcd (found) for C₄₀H₂₀F₂₈N₆-Zn: C, 40.6 (40.8); H, 1.7 (1.6); N, 7.1 (7.0); Zn, 5.5 (5.5).
- (14) ¹H NMR for the *p*-tolyl analogue of **18**: δ 33.8 (*CH*₃), 15.0 (H_{meta}), -47.4 (H_{ortho}). That the *p*-CH₃ and H_{para} ¹H shifts are of opposite sign indicates that the paramagnetic shifts are primarily contact in origin.
- (15) (a) Eaton, D. R.; Josey, A. D.; Benson, R. E.; Phillips, W, D.; Cairns, T. L. J. Am. Chem. Soc. 1962, 84, 4100. (b) Eaton, D. R.; Josey, A. D.; Phillips, W. D.; Benson, R. E. J. Chem. Phys. 1962, 37, 347. (c) Eaton, D. R.; Josey, A. D.; Phillips, W. D.; Benson, R. E. Mol. Phys. 1962, 5, 407. (d) Eaton, D. R.; Josey, A. D.; Benson, R. E. J. Am. Chem. Soc. 1967, 89, 4040.

⁽¹²⁾ **17**: ¹H NMR (599.7 MHz, CD₂Cl₂, 300 K): δ 15.3 (s, 8H, w/2 46 Hz, H_{meta}), -32.2 (s, 4H, w/2 57 Hz, H_{para}), -48.0 (s, 8H, w/2 720 Hz, H_{ortho}). ¹³C (150.8 MHz): δ 534.3 (s, 8C, w/2 155 Hz, C_{ortho}), 320.2 (s, 4C, w/2 219 Hz, C_{para}), 155.1 (q, 4C, J_{CF} 289 Hz, w/2 108 Hz, CF₃), 135.6 (t, 4C, J_{CF} 256 Hz, w/2 186 Hz, CF₃CF₂), 106.6 (br s, 4C, w/2 334 Hz, CF₃CF₂CF₂), 42.9 (br s, 2C, w/2 204 Hz, C_{ring ipso}), -24.8 (br s, 8C, w/2 59 Hz, C_{meta}). ¹⁹F (564.2 MHz): δ -74.2 (s, 12F, w/2 39 Hz, CF₃), -117.61 (s, 8F, w/2 106 Hz, CF₃CF₂), -127.8 (s, 8F, w/2 205 Hz, NCF₂). Chemical shifts are in ppm relative to internal (CH₃)₄Si (¹H and ¹³C) and CCl₃F (¹⁹F). Mp: 130.5–131 °C. HRMS: m/z 1175.0612 (M⁺), 1006.1220 (M⁺ - C₃F₇). UV (isooctane): λ_{max} 321 nm (log ϵ 4.29). IR: 1546, 1480 cm⁻¹. Raman: 1530, 1464 cm⁻¹. Anal.: Calcd (found) for C40H₂₀CoF₂₈N₆: C, 40.8 (41.0); H, 1.7 (1.7); Co, 5.0 (4.9); N, 7.1 (7.1). Crystals suitable for X-ray diffraction studies were grown by slow evaporation of a heptane solution.