Inorg. Chem. **2003**, *42*, 932−934

Perfluoroalkyl-Substituted Triazapentadienes and Their Metal Complexes

A. R. Siedle,*,† Robert J. Webb,† Fred E. Behr,‡ Richard A. Newmark,† David A. Weil,† Kristin Erickson,† Roberta Naujok,† Myles Brostrom,† Mark Mueller,† Shih-Hung Chou,† and Victor G. Young, Jr.§

3M Corporate Research Laboratories, St. Paul, Minnesota 55144, 3M Specialty Materials Division, St. Paul, Minnesota 55144, and Chemistry Department, University of Minnesota, *Minneapolis, Minnesota 55455*

Received September 11, 2002

Triazapentadienides, $C_3F_7-C(=\text{NR})-N=C(\text{NHR})-C_3F_7$, result from the reaction of primary amines $RNH₂$ with the fluorinated imine $C_3F_7-CF=N-C_4F_9$. The aniline derivative (R = Ph) is a weak monoprotic acid in dmso. Its conjugate base exhibits an extensive coordination chemistry. It acts as a bidentate ligand toward the molecular fragments $Pd(C_3H_5)$, $Rh(c-C_8H_{12})$, $Ir(c-C_8H_{12})$, and Rh-(CO)₂. The chelates $[C_3F_7-C(NPh)-N-C(NPh)-C_3F_7]_2M$, $M = Mg$, Mn, Fe, Co, Ni, Cu, Zn, and Pd, were prepared. In the crystallographically characterized Co complex, the metal is 3d7 , *S* $=$ $\frac{3}{2}$ and tetrahedrally coordinated. Spin densities at carbon in
the C.H. and C.E. groups were estimated from the 1H and 19E the C_6H_5 and C_3F_7 groups were estimated from the ¹H and ¹⁹F contact shifts. Spin delocalization onto phenyl sp² carbons is \sim 10 times greater than onto the fluorinated $sp³$ carbons.

Organic ligands form the cornerstone of a broad field of inorganic chemistry, that of coordination compounds. For example, *^O*,*O*-*â*-diketone complexes, [R-C(O)-CH-C(O)- R]M, are one of the largest classes of transition metal and main group chelates; examples containing a substantial fraction of the elements in the periodic table are known.¹ Diaza analogues, in which the ligating oxygen atoms are replaced by isoelectronic NR groups, β -ketimine complexes, $[R-C(NR)-CH-C(NR)-R]M$, show chemical similarities and have recently been investigated as polymerization catalysts as well as models for copper metalloproteins^{2,3} We present a survey of a broad, new class of ligands, perfluoroalkyl-substituted triazapentadienes of the type $R_fC(=\overline{NR})$ - $N=C(HNR)R_f$ (R_f = perfluoroalkyl). They exhibit substantial scope and diversity in their chemistry that we believe may rival that of diketones and diketimines.4

When $(C_4F_9)_3N$ and SbF₅ are heated to ~140 °C, loss of C_4F_{10} occurs and the imine C_3F_7 –CF=NC₄F₉, **1**, distills from

the reaction mixture.⁵ This acid-catalyzed α -elimination reaction is generally applicable to linear, cyclic, and heteroatom-substituted⁶ perfluoroalkylamines. Addition of 1 to

- (2) (a) Kim, J.; Hwang, J. W.; Kim, Y.; Lee, M. H.; Han, Y.; Do, Y. *J. Organomet. Chem*. **2001**, *620*, 1. (b) Qian, B.; Ward, D. L.; Smith, M. R., III. *Organometallics* **1998**, *17*, 3070. (c) Rahim, M.; Taylor, N. J.; Xin, S.; Collins, S. *Organometallics* **1998**, *17*, 1315. (d) Cheng, M.; Lobkovsky, E. B.; Coates, J. *J. Am. Chem. Soc*. **1998**, *120*, 11018. (e) Radzewich, C. E.; Coles, M. P.; Jordan, R. F. *J. Am. Chem. Soc*. **1998**, *120,* 9384. (f) Ihara, E.; Young, V. G., Jr.; Jordan, R. F. *J. Am. Chem. Soc*. **1998**, *120*, 8277. (g) O'Keefe, B. J.; Hillmyer, M.; Tolman, W. B. *J. Chem. Soc., Dalton Trans*. **2001**, 2215. (h) Jazdzewski, B. A.; Holland, P. L.; Pink, M.; Young, V. G., Jr.; Spencer, D. J. E.; Tolman, W. B. *Inorg*. *Chem*. **2001**, *40*, 6097. (i) Panda, A.; Stender, M.; Wright, R. J.; Olmstead, M.; Klavins, P.; Power, P. P. *Inorg. Chem*. **2002**, *41*, 3909.
- (3) Other exemplary uninegative diaza ligands include *phosphorinamines*: (a) Cavell, R. G.; Babu, R. P. K.; Kasani, A.; McDonald, A*. J. Am. Chem. Soc*. **1999**, *121*, 5805. (b) Kasani, A.; McDonald, R.; Cavell, R. G. *Organometallics* **1999**, *18*, 3775. *Arylguanidates*: (c) Holman, K. T.; Robinson, S. D. Sahajpal, A.; Stead, J. W. *J. Chem. Soc., Dalton Trans*. **1999**, 15. (d) Maia, J. R.; Gazard, P. A.; Kilner, M.; Batsamov, A. S.; Howard, J. A. K. *J. Chem. Soc., Dalton Trans*. **¹⁹⁹⁷**, 4625. *Aminidates* (e) Barker, J.; Kilner, M., *Coord. Chem. Re*V. **1994**, *133*, 219. (f) Edelman, F. T*. Top. Curr. Chem*. **1996**, *179*, 113. (g) Jayaratne, K. C.; Keaton, R. J.; Henningsen, D. A.; Sita, L. R. *J. Am. Chem. Soc*. **2000**, *122*, 10490. (h) Chen, C.-T.; Rees, L. H.; Cowley, A. R.; Green, M. L. H. *J. Chem. Soc., Dalton Trans*. **2001**, 1761. (i) Gomez, R.; Green, M. L. H. *J. Chem. Soc., Dalton Trans*. **1996**, 939. (j) Barbier-Baudry, D.; Bouazza, A.; Brachais, C. H.; Dormond, A.; Visseaux, M*. Macromol. Rapid Commun.* **2000**, *21*, 213. (k) Keaton, R. J.; Jayaratne, K. C.; Henningsen; Koterwas, L. A.; Sita, L. R. *J. Am. Chem. Soc*. **2001**, *123*, 6197. *Aminotroponimines*: (l) Brasen, W. R.; Holmquist, H. E.; Benson, R. E. *J. Am. Chem. So*c. **¹⁹⁶¹**, *⁸³*, 3125. (m) Roesky, P. W. *Chem. Soc. Re*V. **²⁰⁰⁰**, *29*, 335. *5-Aza-semicorrins*: (n) Leutenegger, U.; Umbricht, G.; Fahrni, C.; von Matt, P.; Pfaltz, A. *Tetrahedron* **1992**, *48*, 2143. Two excellent comprehensive reviews have recently appeared. One (Bourget-Merle, L.; Lappert, M. F.; Severn, J. R. *Chem. Re*V*.* **²⁰⁰²**, *¹⁰²*, 3031) discusses *â*-diketoiminato metal complexes. The other (Piers, W.; Emslie, D. J. H. *Coord. Chem. Re*V*.* **²⁰⁰²**, *²³³*-*234*, 131) treats, inter alia, NN, NNN, NO, NCN, and NON donor ligands.
- (4) Trifluoroacetamidine, $HN=C(CF_3)-NH_2$, undergoes a condensation reaction in the presence of platinum hydrides to liberate NH₃ and form compounds containing the $HN-C(CF_3)-N-C(CF_3)-NH$ ligand among which the $RuH(CO)(PPh₃)₂$ complex was characterized crystallographically. Hursthouse, M. B.; Mazid, M. A.; Robinson, S. D.; Sahajpal, A. *J. Chem. Soc., Dalton Trans.* **1994**, 3615. We thank a reviewer for drawing notice to these ingenious syntheses.
- (5) Petrov, V. A.; Belen'lii, G. G.; German, L. S. *Iz*V*. Akad. Nauk SSSR, Ser. Khim*. **1985**, 1934. Aluminum chlorofluoride has also been used as a catalyst: Petrov, V. A.; Krespan, C. G.; Smart, B. E. *J. Fluorine Chem.* **1996**, *77*, 139.
- (6) Banks, R. E.; Burling, E. D. *J. Chem. Soc*. **1965**, 6077.

932 Inorganic Chemistry, Vol. 42, No. 4, 2003 10.1021/ic020550t CCC: \$25.00 [©] 2003 American Chemical Society Published on Web 01/21/2003

^{*} Author to whom correspondence should be addressed. E-mail: arsiedle@mmm.com.

[†] 3M Corporate Research Laboratories.

[‡] 3M Specialty Materials Division.

[§] University of Minnesota.
(1) Siedle, A. R. In Comprehensive Coordination Chemistry; Wilkinson, (1) Siedle, A. R. In *Comprehensive Coordination Chemistry*; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon: New York, 1987; Vol. 2, p 365.

aniline in diethyl ether at 25 °C results in a series of addition-HF elimination steps, and $C_3F_7-C(=\text{NPh}) N=C(PhNH)-C_3F_7$, **2** (65% yield), and insoluble PhNH₂. 3HF are produced. Pale yellow **2** may be readily purified by evaporation of the solvent and recrystallization from heptane or vacuum sublimation.^{7,8} This quite general synthesis of triazapentadienes succeeds with a wide variety of primary amines of diverse functionality so long as they do not contain other acidic groups (NH_2, CO_2H, OH, SH) .⁹ Chiral amines can be employed as well. Anilines containing electron-releasing groups such as *p*-OMe undergo instead intramolecular cyclization to give benzopyrimidines. Monosubstituted hydrazines, RN₂H₃, yield the corresponding 1-R- $3,5-(C_3F_7)_2-1,2,4-triazoles.$

Perfluoroalkyltriazapentadienes are weak monoprotic acids: **2** and $C_3F_7-C(=\overline{NR})-N=C(NRH)-C_3F_7$ ($R = C_6H_4 N=N-C_6H_5$), **3**, have p K_a 's of 14.3 and 13.8, respectively, in dimethyl sulfoxide, cf. 13.3 for $(MeCO)_2CH_2$.¹⁰ Salts of $[C_3F_7-C(NPh)-N-C(NPh)-C_3F_7]$ ⁻ may be obtained using a wide variety of onium hydroxides in methanol. Treatment of 2 with *n*-BuLi in ether or THF affords $Li[C_3F_7-C(NPh)-$ N-C(NPh)-C₃F₇], **4**. This reacts with MeI, Me₃SiCl, Ph₃-PAuCl, and MeHgCl and to give $C_3F_7-C(=\text{NPh}) N=C(NPhR)-C_3F_7$, $R = CH_3 (5)$, SiMe₃ (6), AuPPh₃ (7), and HgMe (8) , respectively. $5-7$ contain C_3F_7 groups that are inequivalent by $19F$ NMR, which indicates that the conjugate base of **2** acts as a monodentate ligand in these compounds. In solution, **8** comprises a mixture of two isomeric η^1 compounds in which the MeHg moiety is attached to either the central or terminal nitrogen positions.

- (7) A closely related compound, the C_7F_{15} analogue of 2, was observed by GC/MS (but not isolated) among the five products of the reaction of C7F15CN with aniline: Paciorek, K. J. L.; Nakahara, J. H.; Kratzer, R. H. *J. Fluorine Chem*. **1985**, *30*, 241.
- (8) **2**: Mp 87.8 °C, ΔH_{fus} 31.3 kJ mol⁻¹. Molar conductance: 15.8 ohm⁻¹ cm² mol⁻¹ (2.2 \times 10⁻³ M in MeNO₂). HRMS: *m*/*z* 559.0728 (M⁺, calcd 559.0724), 390.0834 ($M^+ - C_3F_7$). IR (Nujol) (Raman, neat): 3200, 1682 (1691) 1633 (1625), 1593 (1590) cm-1. UV (isooctane): *λ*max 207 (log 4.34), 266 (3.87) nm. 15N NMR (60.8 MHz, 1,2-C2D2- Cl4, 300 K, with respect to external NH3, indirectly observed via a 1H GHMBC pulse sequence): δ 288.4 (s, N₁), 226.3 (s, N₃), 113.7 (d, J_{NH} 93 Hz, N₅). Assignments were confirmed by ¹⁵N labeling at terminal $N_{1,5}$ through synthesis of 2 from $Ph^{15}NH_2$. ¹⁹F NMR (376.2) MHz, dmso, 300 K): the spectra disclose two inequivalent C_3F_7 groups in which the two different α -CF₂ groups show geminal inequivalence; but only one of the two inequivalent β -CF₂ groups shows geminal inequivalence $[\delta -126.39 \ (2F, \beta - CF_2), -125.69 \ and -125.28 \ (2F, \beta - CF_2), -125.69 \ and -125.28 \ (2F, \beta - CF_2), -125.69 \ and -125.28 \ (2F, \beta - CF_2), -125.69 \ (2F, \beta - CF_2), -125.69 \ (2F, \$ $β$ -CF₂, AB multiplet, J_{AB} 291 Hz), -118.76 and -114.46 (2F, α-CF₂), *β*-CF₂, AB multiplet, *J*_{AB} 291 Hz), -118.76 and -114.46 (2F, α-CF₂, AB
AB multiplet, *J*_{AB} 268 Hz), -116.13 and -114.50 (2F, α-CF₂, AB AB multiplet, J_{AB} 268 Hz), -116.13 and -114.50 (2F, α -CF₂, AB
multiplet, J_{AB} 270 Hz), -80.14 and -79.90 (6F, CF₃)]. The ¹⁹F multiplet, J_{AB} 270 Hz), -80.14 and -79.90 (6F, CF₃)]. The ¹⁹F resonances are broad (*w*/2 [∼]10-20 Hz). NMR spectra are field, temperature, and solvent dependent on account of both a $1-5$ prototropic shift and at least one additional, low-temperature process. Dynamics in **2** have been explored by crystallographic, DNMR, and computational methods. The results will be reported elsewhere.
- (9) This is not a severe limitation because such groups can often be masked or protected. For example, $(p-NO_2Ph)_2N_3\overline{C}_2(\overline{C}_3F_7)_2H$, prepared from **1** and *p*-nitroaniline, can be reduced $(H_2, Pd/C)$ to $(p-NH_2Ph)_{2}N_3C_2$ - $(C_3F_7)_2$ H, which is unobtainable directly from *p*-phenylenediamine. Subsequent diazotization with [NO][BF₄] in CH₃CN yields $[(p-N_2 Ph_2N_3C_2(C_3F_7)_2H$](BF₄)₂, coupling of which with 2-naphthol (Py, CH₃CN) affords [4-(2-HO-C₁₀H₈N=N)Ph]₂N₃C₂(C₃F₇)₂H. Coupling with *p*-Me₂NC₆H₄CH=CH-CHO and elimination of water yields the Schiff base $(p-Me_2NC_6H_4CH=CH-CH=N-C_6H_4)_2N_3C_2(\dot{C}_3F_7)_2H.$
- (10) By potentiometric titration with methanolic [Bu4N]OH; cf.: Bordwell, F. G. *Acc. Chem. R*es. **1988**, *21*, 456.

Figure 1. ORTEP drawing of $[C_3F_7-C(NPh)-N-C(NPh)-C_3F_7]_2Co$, 17.

These interconvert slowly on the NMR time scale, but only the former isomer is observed in crystals.

Most useful for the synthesis of transition metal derivatives are Ag[$C_3F_7-C(NPh)-N-C(NPh)-C_3F_7$], **9**, K[C_3F_7 - $C(NPh)-N-C(NPh)-C_3F_7$], **10**, and $Mg[C_3F_7-C(NPh) N-C(NPh)-C_3F_7]_2$, 11, prepared from 2 and Ag₂O in refluxing CH₃CN, KH in THF, and $(C_5H_5)_2Mg$ in toluene at 25 °C, respectively.

Reaction of **9** with $[(C_3H_5)PdCl]_2$, $[Rh(CO)_2Cl]_2$, and $(COD)MCl₂$ (M = Rh, Ir) in CH₃CN at room temperature affords $[C_3F_7-C(NPh)-N-C(NPh)-C_3F_7]E$, $E = Pd(C_3H_5)$, **12**, Rh(CO)₂, **13**, Rh(COD), **14**, and Ir(COD), **15**, respectively (COD $= c - C_8H_{12}$). Treatment of 10 with FeI₂, CoI₂, CuCl₂, and Pd(CF₃CO-CH-COCF₃)₂ in THF produces the symmetrical bis(chelates) $[C_3F_7-C(NPh)-N-C(NPh) C_3F_7$ ₂M where M = Fe (16), Co (17), Cu (18), and Pd (19). The nickel complex, $M = Ni (20)$, was obtained from 11 and NiBr₂(dimethoxyethane) in toluene at 70 °C.

Advantage can be taken of the acidic proton in **2** to prepare additional members of the symmetrical chelate set through reactions with compounds having polar metal-carbon bonds. The compounds $[C_3F_7-C(NPh)-N-C(NPh)-C_3F_7]_2M$, $M =$ Mn (**21**) and Zn (**22**), were obtained upon treatment with $(C_5H_5)_2Mn$ and Me₂Zn, respectively. With the exception of **6**, **7**, and **11** (water reactive) and **21** (O_2 reactive), the new compounds reported here are air-stable. They have the useful property of being soluble in *both* hydrocarbon (C_6H_{14}) and fluorous (C_6F_{14}) solvents.

An ORTEP view of $[C_3F_7-C(NPh)-N-C(NPh)-C_3F_7]_2$ -Co (17) is shown in Figure 1.¹¹ In it, cobalt is tetrahedrally coordinated, with the angle between the two $CoN₂$ planes being 92°; d (Co-N)_{av} is 1.968(2) Å. This geometry helps to minimize nonbonded repulsion among the C_6H_5 rings. The CoN₃C₂ ring is asymmetric: $d(C-N)_{av}$ to N(1,3,4,6) is 1.307(4) Å but $d(C-N)_{av}$ to N(2,5) is much longer, 1.338(4) Å. The bite distance of the ligand is 2.870 Å.

⁽¹¹⁾ Crystal data: red-orange plates from C₆H₁₄, *P*¹ (triclinic), *a* = 11.706(2) Å, *b* = 12.112(2) Å, *c* = 17.756(4) Å, α = 102.939(3)°, β 11.706(2) Å, *b* = 12.112(2) Å, *c* = 17.756(4) Å, α = 102.939(3)°, β = 102.498(4)°, ν = 106.230(3)° at 173 K with Mo Kα radiation. *V* = 102.498(4)°, γ = 106.230(3)° at 173 K with Mo Kα radiation, *V*
= 2248.7(3) Å³, *Z* = 2, FW = 1175.55, *d*(calcd) = 1.736 g cm⁻³,
abs coeff = 0.537 mm⁻¹ max/min transmission = 1.000/0.908 Final abs coeff = 0.537 mm⁻¹, max/min transmission = $1.000/0.908$. Final R $I > 2\sigma(I)$: R1 = 0.04399 wR2 = 0.1083 R indices (all data): *R* $[I > 2\sigma(I)]$: R1 = 0.04399, wR2 = 0.1083. *R* indices (all data): $R1 = 0.0657$, wR2 = 0.1233. X-ray crystallographic files (CIF) are available as Supporting Information.

COMMUNICATION

Cobalt in **17** is high spin 3d⁷, $S = \frac{3}{2}$ ($\mu_{eff} = 4.05$ μ_B in CD2Cl2 at 300 K by NMR methods). Even so, well-resolved ¹H, ¹³C, and ¹⁹F NMR spectra were obtained and assigned with the aid of ${}^{1}H-{}^{13}C$ 2D HMQC spectroscopy.¹² Chemical
shifts in 17 relative to the diamagnetic Zp complex 22¹³ shifts in **17** relative to the diamagnetic Zn complex **22**¹³ comprise contact shifts,¹⁴ and, following Eaton et al.,¹⁵ they were used to calculate spin densities at the *o*-, *m*-, and *p*-carbon positions in the ligand phenyl rings: $13.3, -2.0$, and 9.6 e \times 10⁻³ respectively. Spin densities in the C₃F₇ moieties are much lower: $-17, -6$, and $8 \text{ e} \times 10^{-4}$ for the α - and β -*C*F₂ and *C*F₃ carbon nuclei, respectively. Spin delocalization through π bonds in the C₆H₅ rings is thus much more effective than through σ bonds in the C₃F₇ groups despite the strong electron-withdrawing effect of fluorine.

Supporting Information Available: Crystallographic data in CIF format and experimental details for the collection of crystallographic data. Experimental details for the synthesis of **1**, **2**, and **17**. This information is available free of charge via the Internet at http://pubs.acs.org.

IC020550T

- (13) **22**: ¹H NMR (599.7 MHz, CD₂Cl₂, 300 K) δ 7.29 (m, 8H, H_{meta}), 7.25 (m, 4H, H_{para}), 6.64 (m, 8H, H_{ortho}); ¹³C (150.8 MHz) δ 158.9 (t, 7.25 (m, 4H, H_{para}), 6.64 (m, 8H, H_{ortho}); ¹³C (150.8 MHz) *δ* 158.9 (t, ²*J*_{CF} 23 Hz, N*C*N), 142.9 (4C, C_{ipso}), 129.7 (8C, C_{meta}), 126.9 (4C, *J*_{CF} 272 Hz, CF₃CF₂); ¹⁹F (564.2 MHz) δ -80.5 (CF₃), -104.5 (CF₃N) -123.4 (CF₃CF₂). The ¹H spectrum shows more than the $(CF₂N)$, -123.4 ($CF₃CF₂$). The ¹H spectrum shows more than the expected number of lines. We believe that the pairwise degeneracy of H_0 and H_m is lifted due to restricted rotation of the phenyl rings. Assignments were confirmed by a 2D $\rm{^{1}H-^{13}C}$ experiment. Mp: 130-131 °C. HRMS: *m*/*z* 1180.0749 (M+). IR: 1558 cm-1. UV (isooctane) $λ$ _{max} (log $ε$): 253 (3.74), 337 (4.32). IR: 1580, 1507, 1489 cm⁻¹ Raman: 1647, 1581, 1560 cm⁻¹. Anal.: Calcd (found) for $C_{40}H_{20}F_{28}N_6$ -Zn: C, 40.6 (40.8); H, 1.7 (1.6); N, 7.1 (7.0); Zn, 5.5 (5.5).
- (14) ¹H NMR for the *p*-tolyl analogue of **18**: δ 33.8 (CH₃), 15.0 (H_{meta}), -47.4 (H_{ortho}). That the *p*-CH₃ and H_{para} ¹H shifts are of opposite sign indicates that the paramagnetic shifts are primarily contact in origin.
- (15) (a) Eaton, D. R.; Josey, A. D.; Benson, R. E.; Phillips, W, D.; Cairns, T. L. *J. Am. Chem. Soc*. **1962**, *84*, 4100. (b) Eaton, D. R.; Josey, A. D.; Phillips, W. D.; Benson, R. E*. J. Chem. Phys*. **1962**, *37*, 347. (c) Eaton, D. R.; Josey, A. D.; Phillips, W. D.; Benson, R. E. *Mol. Phys*. **1962**, *5*, 407. (d) Eaton, D. R.; Josey, A. D.; Benson, R. E. *J. Am. Chem. Soc*. **1967**, *89*, 4040.

⁽¹²⁾ **17**: ¹H NMR (599.7 MHz, CD₂Cl₂, 300 K): *δ* 15.3 (s, 8H, *w*/2 46 Hz, H_{neta}), -32.2 (s, 4H, *w*/2 57 Hz, H_{para}), -48.0 (s, 8H, *w*/2 720 Hz, H_{meta}), -32.2 (s, 4H, *w*/2 57 Hz, H_{para}), -48.0 (s, 8H, *w*/2 720
Hz, H_{ortho}). ¹³C (150.8 MHz): δ 534.3 (s, 8C, *w*/2 155 Hz, C_{ortho}), 320.2 (s, 4C, *w*/2 219 Hz, Cpara), 155.1 (q, 4C, *J*CF 289 Hz, *w*/2 108 Hz, *C*F3), 135.6 (t, 4C, *J*CF 256 Hz, *w*/2 186 Hz, CF3*C*F2), 106.6 (br s, 4C, $w/2$ 334 Hz, $CF_3CF_2CF_2$), 42.9 (br s, 2C, $w/2$ 204 Hz, C_{ring ipso}), -24.8 (br s, 8C, *w*/2 59 Hz, C_{meta}). ¹⁹F (564.2 MHz): δ -74.2 (s, 12F, *w*/2 39 Hz, CF₃), -117.61 (s, 8F, *w*/2 106 Hz, CF₃CF₂), -127.8 (s, 8F, *w*/2 205 Hz, NC*F*2). Chemical shifts are in ppm relative to internal (CH₃)₄Si (¹H and ¹³C) and CCl₃F (¹⁹F). Mp: 130.5-131 °C.
HRMS: m/z 1175.0612 (M⁺), 1006.1220 (M⁺ - C₃F₇). UV (iso-HRMS: *m*/*z* 1175.0612 (M⁺), 1006.1220 (M⁺ − C₃F₇). UV (iso-
octane): $λ_{max}$ 321 nm (log ∈ 4.29). IR: 1546, 1480 cm⁻¹. Raman: 1530, 1464 cm⁻¹. Anal.: Calcd (found) for $C_{40}H_{20}CoF_{28}N_6$: C, 40.8 (41.0); H, 1.7 (1.7); Co, 5.0 (4.9); N, 7.1 (7.1). Crystals suitable for X-ray diffraction studies were grown by slow evaporation of a heptane solution.